Synaptic depression and neuronal loss in transiently acidic hippocampal slice cultures.

نویسندگان

  • Z Xiang
  • P J Bergold
چکیده

Acidosis is a rapid and inevitable event accompanying cerebral ischemia or trauma. We used hippocampal slice cultures to examine an immediate effect of acidosis, synaptic depression; and a delayed effect, neuronal loss. Exposure to low bicarbonate artificial cerebral spinal fluid (aCSF), pH 6.70 for 30 min at 32 degrees C, acidified intracellular pH from 7.31+/-0.12 to 6.53+/-0.08. Accompanying intracellular acidosis was a depression of synaptic responses. Both effects rapidly reversed after treatment with normal aCSF pH 7.35. Death analysis after acidosis treatment revealed no delayed neuronal loss. Increasing the duration of the acidosis to 60 min, however, induced irreversible synaptic depression and delayed neuronal loss. Increasing acidosis temperature to 37 degrees C acidified intracellular pH and depressed synaptic responses. Delayed neuronal loss was also observed. Acidosis using lactate aCSF, pH 6. 70 for 30 min at 32 degrees C acidified intracellular pH from 7. 19+/-0.13 to 6.43+/-0.07 and depressed synaptic responses. After reperfusion with lactate containing aCSF pH 7.35, intracellular pH recovered yet synaptic responses remained depressed and delayed neuronal loss was observed. This suggested that, for a 30-min treatment at 32 degrees C, lactate acidosis was neurotoxic while low bicarbonate acidosis was not. Increasing the duration or temperature of low bicarbonate acidosis induced neuronal loss. These data provide additional evidence that acidosis contributes to the neurotoxicity during stroke and trauma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures

A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...

متن کامل

Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures

A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...

متن کامل

Unconjugated Bilirubin Exposure Impairs Hippocampal Long-Term Synaptic Plasticity

BACKGROUND Jaundice is one of the most common problems encountered in newborn infants, due to immaturity of hepatic conjugation and transport processes for bilirubin. Although the majority of neonatal jaundice is benign, some neonates with severe hyperbilirubinemia develop bilirubin encephalopathy or kernicterus. Accumulation of unconjugated bilirubin (UCB) in selected brain regions may result ...

متن کامل

Borna disease virus replication in organotypic hippocampal slice cultures from rats results in selective damage of dentate granule cells.

In the hippocampus of Borna disease virus (BDV)-infected newborn rats, dentate granule cells undergo progressive cell death. BDV is noncytolytic, and the pathogenesis of this neurodevelopmental damage in the absence of immunopathology remains unclear. A suitable model system to study early events of the pathology is lacking. We show here that organotypic hippocampal slice cultures from newborn ...

متن کامل

Culturing Adult Rat Hippocampal Neurons with Long-Interval Changing Media

Background: Primary cultures of embryonic neurons have been used to introduce a model of neurons in physiological and pathological conditions. However, age-related cellular events limit this method as an optimal model in adult neurodegenerative diseases studies. Besides, short-interval changing media in previous cultures decreases the effectiveness of this model. As an example of this matter, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain research

دوره 881 1  شماره 

صفحات  -

تاریخ انتشار 2000